How a laser can improve bearing life
The CO2 laser offers a way to case-harden bearing surfaces to extend their life without distorting the part. And that means more production from your operations.
Costly shutdowns and maintenance programs are frequently the norm for heavily loaded bearings and other PT components subject to wear. In the quest for longer wear life of these components, companies are searching for more effective case hardening techniques.
One of the most promising tools for case hardening bearing surfaces is the multi-use laser. Though lasers have many uses, few manufacturers are aware of their case-hardening abilities. This is despite the fact that CO2 lasers have been used to harden metal surfaces for at least 20 years.
Why a laser?
The laser can heat treat different types and shapes of bearing elements. The most commonly treated elements are shafts that mate with bearings, especially heavily loaded bearings. Heat treating these shafts reduces the likelihood of galling when the bearing is pressed onto the shaft. Also, for bearings that require frequent replacement because they operate in hostile environments, it reduces the risk of bearing seizure, which would otherwise damage the shaft.
Normally, rollers, balls, and other small bearing components are not good candidates for laser heat treating. But the surfaces on which the bearings run can be hardened in many applications.
The type of material being treated affects the hardness and like other technologies, laser hardening works best if the bearing metal being treated has a minimum of 0.4% carbon content. In most steels containing 0.4% to 0.7% carbon, the laser achieves a case hardness of 58 to 62 Rockwell C for a depth typically ranging from 0.010 to 0.080 in. Deeper cases are generally not advisable with laser hardening because of the risk of melting the surface.
Shaft and bearing applications
In a typical application, lasers heat treating is effective on bearing areas and tapered seating , areas on arbor shafts used in coiler and recoiler mandrels. These bearing areas, which support the inner races of rolling element bearings, are highly susceptible to wear because of heavy shaft loading.
The tapered areas provide seats for nonrotating elements that support heavy compression loads. Frequently, these areas can’t be treated by other methods because of possible shaft distortion.
Aside from the reduced risk of distorting a component during heat treating, and the ability to precisely treat a specific wear location, prolonged service life and better performance are two primary benefits of laser heat treating bearing seat areas. Manufacturers turn to laser heat treating of their shafts and bearing surfaces because the technology reduces the chance of line shutdowns caused by wear problems, and the related maintenance requirements.
If you have components that require case hardening and you’re tired of problems of distortion and failure, call BMR Group at 260-635-2195 or send an email and discover how easy it can be to gain the advantages of laser heat treating.